Quais pontos de contato são mais importantes? Um modelo baseado em dados para entender a jornada do estudante

Autores

DOI:

https://doi.org/10.18568/internext.v20i03.866

Palavras-chave:

Comportamento do Consumidor, Tomada de Decisão, Ensino Superior, Marketing, Modelos de atribuição

Resumo

Objetivo: Esta pesquisa teve como objetivo desenvolver um modelo de atribuição usando dados de jornadas individuais de clientes para avaliar canais de marketing e atribuir valor a vários pontos de contato. Método: Por meio de estudo de caso em uma instituição de ensino superior, a pesquisa desenvolveu e aplicou um modelo de atribuição que analisou 662.838 pontos de contato online e offline em 185.631 jornadas de estudantes. Principais Resultados: A pesquisa mostra que e-mail, chat ao vivo, call center, vendas e interações inbound foram responsáveis por mais de 70% das matrículas. Também enfatiza a importância dos contatos iniciados pelo cliente em relação aos contatos iniciados pela empresa, com pontos de contato de propriedade da marca representando mais de 80% dos contatos registrados. Relevância / Originalidade: Este artigo oferece uma contribuição dupla para a literatura sobre a jornada do estudante, avaliando a eficácia dos pontos de contato no marketing e explorando metodologias de medição robustas. Contribuições Teóricas / Metodológicas: A principal contribuição desta pesquisa para a área está em demonstrar que modelos baseados em dados coletados ao longo da jornada do cliente — e que consideram todos os pontos de contato de marketing — apresentam desempenho superior na identificação da contribuição específica de cada canal. Contribuições sociais / para a gestão: Este estudo oferece três principais insights gerenciais: destaca o valor estratégico de integrar a jornada do cliente ao planejamento, a importância de mapear e monitorar os pontos de contato por meio de sistemas de dados e a necessidade de melhorias contínuas e iterativas para aumentar a conversão e aprimorar a experiência do cliente.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luciana Florêncio de Almeida, Escola Superior de Propaganda e Marketing – São Paulo (SP), Brazil.

Administradora pela ESPM e doutora em Administração pela FEA-USP. Desde 2003, leciona na graduação da Escola Superior de Propaganda e Marketing (ESPM) e em cursos de pós graduação, com enfoque em gestão de negócios e marketing. Assumiu posições executivas em Gestão de Marketing e Gestão Estratégica e atualmente é sócia-proprietária da consultoria Almeida Associados.

Rogério Ferraz dos Santos, Escola Superior de Propaganda e Marketing – São Paulo (SP), Brazil.

Mestre pelo Mestrado profissional em comportamento do consumidor da ESPM-SP

Referências

Abhishek, V., Fader, P., & Hosanagar, K. (2012). Media exposure through the funnel: a model of multi-stage attribution. SSRN. https://doi.org/10.2139/ssrn.2158421

Abreu, W. F., Araújo, R. S., & Lima, J. P. C. (2019). Políticas de financiamento e expansão no Ensino Superior do Brasil. Quaestio - Revista de Estudos em Educação, 21(2), 583-609. https://doi.org/10.22483/2177-5796.2019v21n2p583-609

Alblas, R. (2018). Attribution modeling customer journey online. Retrieved from https://research.tue.nl/en/studentTheses/attribution-modeling

Altomare, D., & Loris, D. (2016). Python Package “ChannelAttribution. Retrieved from https://pypi.org/project/ChannelAttribution/

Anderl, E., Becker, I., von Wangenheim, F., & Schumann, J. H. (2013). Putting attribution to work: a graph-based framework for attribution modeling in managerial practice. SSRN Electronic Journal, 1-36. https://doi.org/10.2139/ssrn.2343077

Anderl, E., Becker, I., von Wangenheim, F., & Schumann, J. H. (2016). Mapping the customer journey: Lessons learned from graph-based online attribution modeling. International Journal of Research in Marketing, 33(3), 457-474. https://doi.org/10.1016/j.ijresmar.2016.03.001

Archak, N., Mirrokni, V. S., & Muthukrishnan, S. (2010). Mining Advertiser-specific User Behavior Using Adfactors Categories and Subject Descriptors. In Proceedings of the 19th International Conference on World Wide Web (pp. 31-40). Association for Computing Machinery, Raleigh.

Bergamo, F., Ponchio, M., Zambaldi, F., Giuliani, A. C., & Spers, E. (2010). De prospect a aluno: fatores influenciadores da escolha de uma instituição de ensino superior. Base – Revista de Administração e Contabilidade da Unisinos, 7(3), 182-193. https://doi.org/10.4013/base.2010.73.01

Berman, R. (2018). Beyond the last touch: Attribution in online advertising. Marketing Science, 37(5), 771-792. https://doi.org/10.1287/mksc.2018.1104

Bolat, E., & O’Sullivan, H. (2017). Radicalising the marketing of higher education: learning from student-generated social media data. Journal of Marketing Management, 33(9-10), 742-763. https://doi.org/10.1080/0267257X.2017.1328458

Buhalis, D., & Volchek, K. (2021). Bridging marketing theory and big data analytics: The taxonomy of marketing attribution. International Journal of Information Management, 56, 102253. https://doi.org/10.1016/j.ijinfomgt.2020.102253

Chapman, D. W. (1981). A model of student college choice. The Journal of Higher Education, 52(5), 490. https://doi.org/10.2307/1981837

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C, & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium (Vol. 76).

Conselho Administrativo de Defesa Econômica (CADE) (2016). Atos de concentração no mercado de prestação de serviços de ensino superior. CADE. Retrieved from https://cdn.cade.gov.br/Portal/centrais-de-conteudo/publicacoes/estudos-economicos/cadernos-do-cade/atos-de-concentracao-no-mercado-de-prestacao-de-servicos-de-ensino-superior-2016.pdf

de Haan, E., Wiesel, T., & Pauwels, K. (2016). The effectiveness of different forms of online advertising for purchase conversion in a multiple-channel attribution framework. International Journal of Research in Marketing, 33(3), 491-507. https://doi.org/10.1016/j.ijresmar.2015.12.001

Følstad, A., & Kvale, K. (2018). Customer journeys: a systematic literature review. Journal of Service Theory and Practice, 28(2), 196-227. https://doi.org/10.1108/JSTP-11-2014-0261

Gai, L., Xu, C., & Pelton, L. E. (2016). A netnographic analysis of prospective international students’ decision-making process: implications for institutional branding of American universities in the emerging markets. Journal of Marketing for Higher Education, 26(2), 181-198. https://doi.org/10.1080/08841241.2016.1245233

Galan, M., Lawley, M., & Clements, M. (2015). Social media’s use in postgraduate students’ decision-making journey: an exploratory study. Journal of Marketing for Higher Education, 25(2), 287-312. https://doi.org/10.1080/08841241.2015.1083512

Hanson, K. H., & Litten, L. H. (1982). Mapping the road to academe: a review of research on women, men, and the college selection process. In P. J. Perun (Ed.), The undergraduate woman: Issues in education equity (pp. 73-98). Lexington Books.

Hossler, D., & Gallagher, K. S. (1987). Studying student college choice: a three-phase model and the implications for policymakers. College and University, 62(3), 207-221.

James-MacEachern, M. (2018). A comparative study of international recruitment–tensions and opportunities in institutional recruitment practice. Journal of Marketing for Higher Education, 28(2), 247-265. https://doi.org/10.1080/08841241.2018.1471014

James-MacEachern, M., & Yun, D. (2017). Exploring factors influencing international students’ decision to choose a higher education institution: A comparison between Chinese and other students. International Journal of Educational Management, 31(3), 343-363. https://doi.org/10.1108/IJEM-11-2015-0158

Kakalejč, L., Bucko, J., Resende, P., & Ferencova, M. (2018). Multichannel marketing attribution using Markov chains. Journal of Applied Management and Investments, 7(1), 49-60.

Kannan, P. K., & Kulkarni, G. (2022). The impact of Covid-19 on customer journeys: implications for interactive marketing. Journal of Research in Interactive Marketing, 16(1), 22-36. https://doi.org/10.1108/JRIM-03-2021-0078

Kannan, P. K., & Li, H. A. (2017). Digital marketing: A framework, review and research agenda. International Journal of Research in Marketing, 34(1), 22-45. https://doi.org/10.1016/j.ijresmar.2016.11.006

Kannan, P. K., Reinartz, W., & Verhoef, P. C. (2016). The path to purchase and attribution modeling: Introduction to special section. International Journal of Research in Marketing, 33(3), 449-456. https://doi.org/10.1016/j.ijresmar.2016.07.001

Kireyev, P., Pauwels, K., & Gupta, S. (2016). Do display ads influence search? Attribution and dynamics in online advertising. International Journal of Research in Marketing, 33(3), 475-490. https://doi.org/10.1016/j.ijresmar.2015.09.007

Kotler, P. (1976). A role for marketing in college admissions. In Applying marketing theory to college admissions (pp. 54-72). College Entrance Examination Board.

Kumar, A., Bezawada, R., Rishika, R., Janakiraman, R., & Kannan, P. K. (2018). The effects of firm generated content (FGC) in social media on customer behavior. Journal of Marketing, 53(9), 1689-1699.

Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420

Li, H., & Kannan, P. K. (2014). Attributing conversions in a multichannel online marketing environment: an empirical model and a field experiment. Journal of Marketing Research, 51(1), 40-56. https://doi.org/10.1509/jmr.13.0050

Li, N., Arava, S. K., Dong, C., Yan, Z., & Pani, A. (2018). Deep neural net with attention for multi-channel multi-touch attribution. AdKDD. https://doi.org/10.48550/arXiv.1809.02230

Mahboobi, S. H., Usta, M., & Bagheri, S. R. (2018). Coalition game theory in attribution modeling: Measuring what matters at scale. Journal of Advertising Research, 58(4), 414-422. https://doi.org/10.2501/JAR-2018-014

Maringe, F. (2006). University and course choice: Implications for positioning, recruitment and marketing. International Journal of Educational Management, 20(6), 466-479. https://doi.org/10.1108/09513540610683711

McColl-Kennedy, J. R., Zaki, M., Lemon, K. N., Urmetzer, F., & Neely, A. (2019). Gaining customer experience insights that matter. Journal of Service Research, 22(1), 8-26. https://doi.org/10.1177/1094670518812182

Nascimento, R. L. S., Cruz Junior, G. G., & Fagundes, R. A. A. (2018). Mineração de dados educacionais: um estudo sobre indicadores da educação em bases de dados do INEP. RENOTE, 16(1), 1-11. https://doi.org/10.22456/1679-1916.85989

Nichols, W. (2013). Advertising Analytics 2.0. Harvard Business Review, 91(3), 60-68.

Ordenes, F. V., Theodoulidis, B., Burton, J., Gruber, T., & Zaki, M. (2014). Analyzing customer experience feedback using text mining: a linguistics-based approach. Journal of Service Research, 17(3), 278-295. https://doi.org/10.1177/1094670514524625

Pattanayak, S., Pati, P. B., & Singh, T. (2022). Performance analysis of machine learning algorithms on multi-touch attribution model. In 3rd International Conference for Emerging Technology (pp. 1-7). IEEE, Belgaum. https://doi.org/10.1109/INCET54531.2022.9824865

Piurcosky, F. P., Calegário, C. L. L., Silva, G., Frogeri, R. F., & Portugal, N. S. (2019). Fusões e aquisições no mercado de ensino superior: uma revisão sistemática. Brazilian Journal of Development, 5(9), 15738-15751. https://doi.org/10.34117/bjdv5n9-146

Rosenbaum, M. S., Otalora, M. L., & Ramírez, G. C. (2017). How to create a realistic customer journey map. Business Horizons, 60(1), 143-150. https://doi.org/10.1016/j.bushor.2016.09.010

Schuhbauer, H., Brockmann, P., & Mustafayev, T. (2020). Mapping the students’ journey to develop student-centered tools. In IEEE Global Engineering Education Conference (pp. 56-60). https://doi.org/10.1109/EDUCON45650.2020.9125139

Senhoras, E. M., Takeuchi, K. P., & Takeuchi, K. P. (2012). A análise estrutural do ensino superior privado sob perspectiva. In Simpósio de Excelência em Gestão e Tecnologia (pp. 1-12). Universidade Federal Fluminense.

Shao, X., & Li, L. (2011). Data-driven multi-touch attribution models. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 258-264). Association for Computing Machinery. https://doi.org/10.1145/2020408.2020453

Shearer, C., Watson, H. J., Grecich, D. G., Moss, L., Adelman, S., Hammer, K., & Herdlein, S. A. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of Data Warehousing, 5(4), 13-22. Retrieved from https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1592780

Tankovska, H. (2020). Share of social media users in the United States who believe they will use select social media more if confined at home due to the coronavirus as of March 2020. Statista. Retrieved from https://www.statista.com/statistics/1106343/social-usage-increase-due-to-coronavirus-home-usa/

Tueanrat, Y., Papagiannidis, S., & Alamanos, E. (2021). Going on a journey: A review of the customer journey literature. Journal of Business Research, 125, 336-353. https://doi.org/10.1016/j.jbusres.2020.12.028

Vescovi, P. V. S. (2020). Análise preditiva na detecção de evasão de alunos no ensino superior privado brasileiro: abordagem de algoritmos de aprendizado de máquina, com base nas perspectivas acadêmicas, financeiras, geográficas e socioeconômicas [dissertation, Fundação Getúlio Vargas]. Retrieved from https://bibliotecadigital.fgv.br/dspace/handle/10438/28907

Wiesel, T., Pauwels, K., & Arts, J. (2010). Marketing’s profit impact: Quantifying online and off-line funnel progression. Marketing Science, 30(4), 604-611. https://doi.org/10.1287/mksc.1100.0612

Yin, R. K. (2018). Case study research and applications: Design and methods. SAGE Publications.

Zhao, K., Mahboobi, S. H., & Bagheri, S. R. (2019). Revenue-based attribution modeling for online advertising. International Journal of Market Research, 61(2), 195-209. https://doi.org/10.1177/1470785318774447

Downloads

Publicado

2025-10-13

Como Citar

Almeida, L. F. de, & Santos, R. F. dos. (2025). Quais pontos de contato são mais importantes? Um modelo baseado em dados para entender a jornada do estudante. Internext, 20(03). https://doi.org/10.18568/internext.v20i03.866

Edição

Seção

Artigos