Complementary Methods to Mitigate the Misinterpretation of Results Due to Collinearity in International Business Research
DOI:
https://doi.org/10.18568/internext.v17i1.681Palavras-chave:
Palavras-chave: Modelagem de equações estruturais. Multicolinearidade. Negócios internacionais.Resumo
Objetivos do estudo: evidenciar lacuna metodológica nos trabalhos empíricos da área de Negócios Internacionais que utilizam modelos estruturais, e prescrever métodos complementares para mitigar o problema da colinearidade
Método: empregou-se uma simulação para evidenciar os efeitos da colinearidade em relação à importância e significância dos preditores, e apresentados métodos voltados ao controle do efeito indesejado da colinearidade
Principais resultados: proposição de métodos complementares que incluem o agrupamento das variáveis latentes que apresentam multicolinearidade em modelos de segunda ordem, e a utilização da medida de importância relativa dos preditores
Contribuições teóricas e metodológicas: a contribuição se dá frente à prescricao de técnicas oferecidas à comunidade acadêmica para a realização de pesquisas empíricas, que foram alcançadas pelo presente estudo.
Relevância e originalidade: a partir das lacunas apontadas na produção cientifica recente do campo de conhecimento dos Negócios Internacionais, são elencadas medidas para mitigar a questao da colinearidade
Contribuições sociais e para a gestão: dentre as principais implicações gerenciais e sociais alcançadas por meio dos achados aqui apresentados, promove-se o desenvolvimento de pesquisas empíricas robustas, relevantes e confiáveis
Downloads
Referências
Academic Journal Guide (2021), Available: https://charteredabs.org/academic-journal-guide-2021/ (Accessed 20 July 2021)
Atinc, G., Simmering, M. and Kroll, M. (2011), Control Variable Use and Reporting in Macro and Micro-Management Research. Organizational Research Methods Vol. 15, 57–74. https://doi.org/10.1177/1094428110397773 DOI: https://doi.org/10.1177/1094428110397773
Bansal, H. (2013), Investigating the measures of relative importance in marketing research. International Journal of Market Research Vol. 55, 675–695. DOI: https://doi.org/10.2501/IJMR-2013-057
Beaujean, A. (2014), Latent Variable Modeling Using R: a step-by-step guide. New York: Routledge – Taylor & Francis Group. DOI: https://doi.org/10.4324/9781315869780
Carlson, K. and Wu, J. (2011), The Illusion of Statistical Control: Control Variable Practice in Management Research. Organizational Research Methods Vol. 15, 413–435. DOI: https://doi.org/10.1177/1094428111428817
Chin, W., Thatcher, J., Wright, R. and Steel, D. (2013), Controlling for common method variance in PLS analysis: the measured latent marker variable approach. In: H. Abdi, W. Chin, V. Vinzi, G. Russolillo, L. Trinchera (Eds.), New Perspectives in Partial Least Squares and Related Methods. New York: Springer. 231–239. DOI: https://doi.org/10.1007/978-1-4614-8283-3_16
Cohen, J. (1988), Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York: Psychology Press.
Cohen, J., Cohen, P., West, S. and Aiken, L. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. 3rd ed. New Jersey: Lawrence Erlbaum Associates, Publishers.
Conway, J. and Huffcutt, A. (2003), A Review and Evaluation of Exploratory Factor Analysis Practices in Organizational Research. Organizational Research Methods Vol. 6, 147–168. DOI: https://doi.org/10.1177/1094428103251541
Conway, J. and Lance, C. (2010), What reviewers should expect from authors regarding common method bias in organizational research. Journal of Business and Psychology Vol. 25, 325–334. DOI: https://doi.org/10.1007/s10869-010-9181-6
Diamantopoulos, A., Riefler, P. and Rith, K. (2008), Advancing formative measurement models. Journal of Business Research Vol. 61, 1203-1218. DOI: https://doi.org/10.1016/j.jbusres.2008.01.009
Fabrigar, L., Wegener, D., Maccallum, R. and Strahan, E. (1999), Evaluating the use of exploratory factor analysis in psychological research. Psychological methods Vol. 4, 272. DOI: https://doi.org/10.1037/1082-989X.4.3.272
Falk, R. and Miller, N. (1992), A Primer for Soft Modeling. Ohio: The University of Akron Press.
Grewal, R., Cote, J. and Baumgartner, H. (2004), Multicollinearity and measurement error in structural equation models: implications for theory testing. Marketing Science Vol. 23, 519-529. DOI: https://doi.org/10.1287/mksc.1040.0070
Groemping, U (2006) Relative Importance for Linear Regression in R: The Package relaimpo. Journal of Statistics Software Vol. 17, 1–27. DOI: https://doi.org/10.18637/jss.v017.i01
Groemping, U. (2020), Package ‘relaimpo’: Relative importance of regressors in linear models (R package version 2.2-3) [software]. Available at: <https://cran.r-project.org/web/packages/relaimpo/relaimpo.pdf>. (Accessed 20 November 2020).
Groemping, U. (2021), relaimpo: Relative Importance of Regressors. Access: <http://prof.beuth-hochschule.de/groemping/relaimpo/> on 24/04/2021.
Gujarati, D. (2003), Basic econometrics. 4th ed. New York: McGraw-Hill/Irwin.
Hair Jr., J., Black, W., Babin, B. and Anderson, R. (2010), Multivariate Data Analysis. 7th ed. Upper Side River, NJ: Prentice Hall.
Hair Jr., J., Hult, G., Ringle, C. and Sarstedt, M. (2016), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd ed. Thousand Oaks, CA: Sage Publications, Inc.
Henseler, J., Hubona, G., Ray, P. (2016), Using PLS Path Modeling in New Technology Research: Updated Guidelines. Industrial Management & Data Systems Vol. 116, 2–20. DOI: https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. and Sinkovics, R. (2009), The use of partial least squares path modeling in International Business. Advances in International Business Vol. 20, 277-319. DOI: https://doi.org/10.1108/S1474-7979(2009)0000020014
Hult, G.; Hair Jr., J.; Proksch, D.; Sarstedt, M.; Pinkwart, A. and Ringle, C. (2018), Addressing Endogeneity in International Business Applications of Partial Least Squares Structural Equation Modeling, Journal of International Business, Vol. 26, No. 3, 1–21 DOI: https://doi.org/10.1509/jim.17.0151
Johnson, J. (2000), A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research Vol. 35, 1-19. DOI: 10.1207/S15327906MBR3501_1 DOI: https://doi.org/10.1207/S15327906MBR3501_1
Johnson, J. and Lebreton, J. (2004), History and use of relative importance indices in organizational research. Organizational Research Methods Vol. 7, 238–257. DOI: https://doi.org/10.1177/1094428104266510
Krasikova, D.; LeBreton, J.; Tonidandel, S. (2011). Estimating the Relative Importance of Variables in Multiple Regression Models. In International Review of Industrial and Organizational Psychology Vol. 26, 119-141, John Wiley and Sons Ltd. https://doi.org/10.1002/9781119992592.ch4 DOI: https://doi.org/10.1002/9781119992592.ch4
Kennedy, P. (1998), A guide to econometrics. 4th ed. Malden: Blackwell Publishing Ltd.
Kock, N. (2015) Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration Vol. 11, 1–10. DOI: https://doi.org/10.4018/ijec.2015100101
Nimon, K. and Oswald, F. (2013), Understanding the Results of Multiple Linear Regression: Beyond Standardized Regression Coefficients. Organizational Research Methods Vol. 16, 650–674. DOI: https://doi.org/10.1177/1094428113493929
Nimon, K., Oswald, F. and Roberts, J. (2020), Package ‘yhat’: Interpreting Regression Effects (R package version 2.0-0) [software] Available: <https://cran.r-project.org/web/packages/yhat/yhat.pdf> (Accessed 20 November 2020).
Peterson, R. and Brown, S. (2005), On the use of beta coefficients in meta-analysis. Journal of Applied Psychology Vol. 90, 175-181. DOI: 10.1037/0021-9010.90.1.175 DOI: https://doi.org/10.1037/0021-9010.90.1.175
Podsakoff, P., Mackenzie, S., Lee, J.-Y. and Podsakoff, N. (2003), Common method biases in behavioral research: a critical review of the literature and recommended remedies. The Journal of Applied Psychology, Vol. 88, 879–903. DOI: https://doi.org/10.1037/0021-9010.88.5.879
Podsakoff, P., Mackenzie, S. and Podsakoff, N. (2012), Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, Vol. 63, 539–69. DOI: https://doi.org/10.1146/annurev-psych-120710-100452
Podsakoff, P. and Organ, D. (1986), Self-reports in organizational research: problems and prospects. Journal of Management, Vol. 12, 531–544. DOI: https://doi.org/10.1177/014920638601200408
Richter, N., Sinkovics, R., Ringle, C., and Schlägel, C. (2016) A critical look at the use of SEM in international business research, International Business Review, Vol. 33 No. 3, 376-404. DOI 10.1108/IMR-04-2014-0148. DOI: https://doi.org/10.1108/IMR-04-2014-0148
Ringle, C. and Sarstedt, M. (2020), Gain More Insight from Your PLS-SEM Results: The Importance-Performance Map Analysis (October 31, 2015). Industrial Management & Data Systems, Vol. 116, No. 9, 1865-1886, 2016, Available at SSRN: https://ssrn.com/abstract=2984821 (Accessed 20 July 2021) DOI: https://doi.org/10.1108/IMDS-10-2015-0449
Ringle, C., Wende, S. and Becker, J.-M. (2020), Software SmartPLS 3. Boenningstedt: SmartPLS GmbH. Access: http://www.smartpls.com (Accessed 20 November 2020).
Shackman, J. (2013), The Use of Partial Least Squares Path Modeling and Generalized Structured Component Analysis in International Business Research: A Literature Review, International Journal of Management, Vol. 30 No. 3 Part 1
SmartPLS v. 3 (2021), European Customer Satisfaction Index (ECSI) example. Data and project available at: https://www.smartpls.com/documentation/sample-projects/ecsi (Accessed 20 July 2021)
Spector, P. and Brannick, M. (2011), Methodological urban legends: The misuse of statistical control variables. Organizational Research Methods Vol. 14, 287–305. https://doi.org/10.1177/1094428110369842. DOI: https://doi.org/10.1177/1094428110369842
Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y. and Lauro, C. (2005), PLS path modeling. Computational Statistics & Data Analysis Vol. 48, 159–205. DOI: https://doi.org/10.1016/j.csda.2004.03.005
Wetzels, M., Odekerken-Schröder, G. and van Oppen, C. (2009), Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration. MIS Quarterly Vol. 33, 177–195. DOI: https://doi.org/10.2307/20650284
White, G., Guldiken, O., Hemphill, T., He, W., Khoobdeh, M. (2016), Trends in International Strategic Management Research from 2000 to 2013: Text Mining and Bibliometric Analyses, Management International Review, Springer, vol. 56(1), 35-65, February, DOI: 10.1007/s11575-015-0260-9 DOI: https://doi.org/10.1007/s11575-015-0260-9
Wilson, B. and Henseler, J. (2007), Modeling reflective higher-order constructs using three approaches with PLS path modeling: A Monte Carlo comparison. Australian and New Zealand Marketing Academy (ANZMAC) Conference. Proceedings... 791–800. Available: <http://doc.utwente.nl/91758/1/BWilson_2.pdf>.
Xin, J., Chen, S., Kwan, H., Chiu, R. and Yim, F. (2018), Work–Family Spillover and Crossover Effects of Sexual Harassment: The Moderating Role of Work–Home Segmentation Preference. Journal of Business Ethics Vol. 147, 619–629. https://doi.org/10.1007/s10551-015-2966-9 DOI: https://doi.org/10.1007/s10551-015-2966-9
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Diogenes de Souza Bido, Antonio Carlos de Oliveira Barroso, Eric David Cohen
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- O(s) autor(es) autoriza(m) a publicação do artigo na revista;
O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigo às normas da publicação.
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Atribuição 3.0 Não Adaptada, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre) em http://opcit.eprints.org/oacitation-biblio.html