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The central idea of this text is to guide researchers through the application of 
regression modeling when the data under analysis are observed over time. In 
general, there are no doubts regarding the application of this modeling in cross 
sections. However, when there is dependence on the data over time, s ome care 
needs to be taken for the results to be reliable and have the same interpretation 
of the coefficients obtained using the least squares method. The text begins with 
a presentation of the concept of autocorrelation and partial autocorrelation to 
identify and apply autoregressive modeling. Following this approach, the 
Augmented Dickey-Fuller test for detecting stationarity is presented, an 
essential condition for the estimators of ordinary least squares to be consistent. 
The Granger causality test is also presented and an example of regression 
applied to the series of the Cost of Living Index and the National Price Index for 
General Consumers. All the examples are presented with the help of Microsoft 
Excel to universalize the technique. 
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1. INTRODUCTION 

The first question that needs to be answered 
before the data modeling is begun with the use of 
regression is whether these data are from a cross 
section, i.e., if the data were observed at the same 
moment in time, or whether they were collected over 
time.  

When a cross section is defined as data collected 
at the same moment in time, there is no need for the 
data to have been collected all at once on a single 
day. What this definitions means is that since a 
sample element is observed, a single observation of it 
will be part of the sample. 

Thus, in a cross sectional cut, the data can be 
collected in a month, a week or even on the same 
day. However, each element is observed only once. 
Furthermore, the usual linear regression techniques, 
learned in early statistics or econometrics courses 
(Gujarati, 2006; Sweeney, Williams, & Anderson, 
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2013; Wooldridge, 2011), apply to this type of study 
and will not be addressed in this text, because 
knowledge of these techniques will be the starting 
point for the analysis that will be conducted here. 

On the other hand, in management it is common 
for a researcher to collect information from the same 
sample element over time. Numerous studies seek to 
evaluate the influence of the variation in a country’s 
GDP on some other variable, or the number of motor 
vehicles imported by a certain country and the impact 
of this on a given variable over a period of time, or 
the variation of the cost of living in a country and its 
relationship with some other variable during a certain 
year or, finally, although not exhaustive, the path 
followed, in points, by some stock market indices, 
such as the index of the New York Stock Exchange 
(NYSE), the B3 Brazil Stock Exchange and Over-the-
Counter Market, or the Tokyo Stock Exchange 
(TSE/TYO) and their interrelations. 

mailto:cfigueiredo@espm.br
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In this longitudinal analysis context, the variables 
load an index 𝑡 that refers to the time in which the 
observation occurred, indicated by 𝑦𝑡, 𝑥𝑡, or 𝑧𝑡, for 
instance. In the specialized literature, these variables 
are identified as time series. 

Put simply, studies can be divided into four major 
groups:  

a) when the interest in prediction lies in using only 
the past observations of 𝑦𝑡 as predictors. 
Mathematically, this means predicting 𝑦𝑡+1 with past 
values of 𝑦𝑡 through a model of 𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 +
𝛽2𝑦𝑡−2 + ⋯ + 𝛽𝑘𝑦𝑡−𝑘 + 𝜀𝑡. 

b) when the interest in prediction of 𝑦𝑡 is linked to 
a possible relationship with another series 𝑥𝑡. The 
result of the final model may be similar to that of a 
simple regression such as 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡. 

c) when the interest in prediction of 𝑦𝑡 is linked to 
a possible relationship with various series 𝑥𝑡, 𝑧𝑡, etc. 
The result of the final model may be similar to that of 
a multiple regression 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑧𝑡 + 𝜀𝑡. 

d) when, in time 𝑡, 𝑦𝑡 is composed of various 
distinct elements 𝑗 that will be observed 
longitudinally, as if a cross section 𝑗 were observed 
over time 𝑡, or if 𝑗 series were evaluated together, 
over time. Thus, the notation becomes 𝑦𝑡𝑗, and a 

possible “simple” model would be represented by  
𝑦𝑡𝑗 = 𝛽0 + 𝛽1𝑥𝑡𝑗 + 𝜀𝑡𝑗 or in multiple form by 𝑦𝑡𝑗 =

𝛽0 + 𝛽1𝑥𝑡𝑗 + 𝛽2𝑧𝑡𝑗 + 𝜀𝑡𝑗.  

Case (a) is known as an autoregressive model. 
Cases (b) and (c) may be treated as linear regressions, 
and the coefficients may be obtained using the 
ordinary least squares (OLS) method, as long as the 
samples are large and some properties that will be 
discussed later are valid. The last case is known as 

panel data, and will not be addressed in this text. In 
the four cases, the random error of the model 𝜀 will 
be assumed as normal and with constant variability 
over time. 

 If in linear regression it is necessary for the 
linearity to be valid for all to function well, with time 
series, the main characteristic for the least squares 
method to function is stationarity. The coefficients 
presented in the models of examples (a), (b) and (c) 
will be easily approximated by OLS, providing the 
samples are large and the series stationary. 

2. THE AUTOREGRESSIVE CASE 

It is not possible to understand the modeling of 
data over time without first understanding the 
concept of autocorrelation. Autocorrelation is a 
coefficient of correlation that measures the intensity 
of the relationship of the series with itself. Indeed, 
the measurement has the same usual metric of 
correlation. However, instead of being calculated 
between two variables, it is calculated between the 
series 𝑦𝑡 and 𝑦𝑡−1, or between 𝑦𝑡  and 𝑦𝑡−2, or 𝑦𝑡  and 
𝑦𝑡−3, and so forth. 

The time distance established between the two 
series is known as a lag. An autocorrelation is of Lag 1 
when the correlation between 𝑦𝑡 and 𝑦𝑡−1 is 
calculated; Lag 2 when the correlation between 𝑦𝑡  

and 𝑦𝑡−2 is calculated; Lag k, when the correlation 
between 𝑦𝑡  and 𝑦𝑡−𝑘 is calculated 

For example, consider the National Price Index for 
General Consumers (IPCA) (IBGE, 2018), from January 
2008 to December 2014. This is an inflation index 
made up of items with prices administered by the 
Brazilian Federal Government and other items with 
unregulated prices. 

 

 
                                            Fig. 1 Percentage variation of the IPCA with a constant imaginary central axis. 
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Figure 1 shows the percentage variation of the 
index. It is easily observed that this index apparently 
varies around a constant central axis. Furthermore, 
the variability around this imaginary central axis is 

also constant throughout 𝑡. This phenomenon is 
known as stationarity, which is a prerequisite for 
usual regression techniques to be applied within the 
context of data over time. 

 

 
   Fig. 2 How to construct the lags in Excel. 

 
In Excel, it is necessary to construct the lags, as 

shown in Figure 2. Observe that at each lag, an 
observation is lost at the end of the series. The Lag 1 
autocorrelation equal to 0.59 is obtained by 
calculating the correlation of columns B and C 
(between 𝑦𝑡 and 𝑦𝑡−1) that appear in Figure 2.  

The Lag 2 autocorrelation equal to 0.24 is 
obtained by calculating the correlation of columns B 
and D (between 𝑦𝑡 and 𝑦𝑡−2), and so forth.  

Usually, a bar chart is constructed with the first k 
correlations and their decay is observed. If this decay 
is slow, there are signs that the process is 
autoregressive, i.e., the current time carries 
considerable information from past times (Bueno, 
2011).  

To know how many past values are relevant, so-
called partial autocorrelation is used, which is nothing 

more than the estimated angular coefficient, �̂�k, 
regarding the linear regression equation estimated by 
�̂�𝑡 = 𝑏0 + 𝑏1𝑦𝑡−1 + 𝑏2𝑦𝑡−2 + ⋯ + 𝑏𝑘𝑦𝑡−𝑘.  

Here, using Excel becomes laborious because to 
calculate the first-order partial autocorrelation it is 
necessary to find the “simple regression” between 𝑦𝑡 
and 𝑦𝑡−1; to calculate the second-order partial 
autocorrelation, it is necessary to find the multiple 
regression between 𝑦𝑡, 𝑦𝑡−1 and 𝑦𝑡−2.  

For the third order, another multiple regression 
between 𝑦𝑡 and three of its lags (𝑦𝑡−1, 𝑦𝑡−2 and 𝑦𝑡−3) 
are required, and so forth. 

As the partial autocorrelation is what defines the 
number of relevant lags in the model (Bueno, 2011; 
Morettin, 2008; Morettin & Tolói, 2006), it is 
necessary to use the following rule of significance to 
be significant.  

A partial autocorrelation needs to be higher than 

±2/√𝑛 with significance of 5%. In the case of the 
series of the IPCA, with n = 84, the critical lower and 
upper limits are -0.22 and 0.22, respectively. 
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Fig. 3 Correlograms of the autocorrelation function and the partial autocorrelation function. 

 
Figure 3 shows exactly how the identification of an 

autoregressive model functions. Its autocorrelations 
decay slowly (left-hand bar chart, Fig. 3), indicating 
dependence on the past and the only relevant 
dependence is at the time with a lag, as only the first 
partial autocorrelation (k = 1) is significant (right-
hand bar chart, Fig. 3). 

Thus, the autoregressive model, estimated for the 
variation of the IPCA, via regression, is: �̂�𝑡 = 0.19 +
0.60 𝑦𝑡−1 

Indicating that on average the variation of 
inflation at time 𝑡 is 0.60 of the variation of time 
𝑡 –  1. The linear coefficient, 0.19, indicates that 
although the variation of the past month (time 𝑡 –  1) 
was zero, at the current time 𝑡, there could be an 
expected variation of 0.19. 

 3. STATIONARITY 

Everything that was discussed in the previous 
section will only be valid when there is stationarity. 
With this property, the OLS estimators become 
consistent. A series is said to be stationary when: 

 𝐸(𝑦𝑡)  =  𝜇 (the series must vary around a 
constant central axis); and  

 𝐸[(𝑦𝑡 − 𝜇)(𝑦𝑡−𝑘 − 𝜇)] = 𝛾𝑘 (the variability 
around this imaginary central axis must also be 
constant), for all 𝑡. 

But how can the presence of stationarity be 
tested? Dickey and Fuller (1979) developed a method 
to verify the presence of stationarity called the 
Augmented Dickey-Fuller test. To bring it to Excel, 
imagine the autoregressive model with a lag, 𝑦𝑡 =
𝛽0 + 𝛽1𝑦𝑡−1 + 𝜀𝑡, developed in the previous section.  

 

 

 

As homoscedasticity is already assumed for the 
random error, 𝜀𝑡, it is sufficient to verify whether the 
angular coefficient, 𝛽1, is between the values of –1 
and 1, exclusive. 

Geometrically, this means that the values of the 
angular coefficient need to be within a circle of unit 
radius. However, they cannot be at the center (value 
= 0) of the circle or on the circumference. 

In the literature, ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1  is called first-
order differentiation. Thus, if: 

 ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, then, by substitution: 

 ∆𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝜀𝑡 − 𝑦𝑡−1;  

 ∆𝑦𝑡 = 𝛽0 + (𝛽1 − 1)𝑦𝑡−1 + 𝜀𝑡 , when 𝑦𝑡−1 
becomes evident. 

Thus, if it is thought that (𝛽1 − 1) , then it is 
sufficient to test the hypotheses: H0:  = 0  against 
H1:  < 0 to gauge the presence or absence of 
stationarity. 

The rejection of H0 favors stationarity. The 
Augmented Dickey-Fuller test also considers L lags of 
∆𝑦𝑡, added to the previous result. The number of lags 
of ∆𝑦𝑡, which are added when the test is performed, 

can be obtained through the whole value of √𝑛 − 1
3

. 

Thus, in Excel, the Augmented Dickey-Fuller test is 
performed when the estimated regression for the 
model is found: 

∆𝑦𝑡 = 𝛽0 + 𝜌𝑦𝑡−1 + 𝛾1∆𝑦𝑡−1 +
⋯ + 𝛾𝐿∆𝑦𝑡−𝐿 + 𝜀𝑡. 

(Equation 01)  

If the statistic t observed for the coefficient  is 
lower than –2.9, then H0 is rejected, concluding that 
the series is stationary. 
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Fig. 4 How to prepare Excel for the augmented Dickey-Fuller test. 

 
In the example of the variations of the IPCA, n = 

84, in other words, L = 4 should be considered in the 
model specified by Equation 01. Figure 4 shows how 
to create the lags of the original variable, 𝑦𝑡, and their 
difference ∆𝑦𝑡. With the spreadsheet prepared, an 
estimate for the test model is obtained. The solution 

is shown in Table 1. Observe that the observed 
statistic 𝑡 for the coefficient of the variable  𝑦𝑡−1 is –
5.49, lower than the critical value, –2.9, which 
indicates that the series of percentage variations of 
the IPCA may be considered stationary. 

 

Tab. 1 Results of the augmented Dickey-Fuller test 

 Coefficients Standard Error t Stat 

Intercept 0.37 0.07 5.26 

𝑦𝑡−1 -0.79 0.14 -5.49 

∆𝑦𝑡−1 0.40 0.13 3.13 

∆𝑦𝑡−2 0.25 0.13 1.93 

∆𝑦𝑡−3 0.41 0.11 3.54 

∆𝑦𝑡−4 0.16 0.12 1.38 

 
In general, percentage variation series are 

stationary. However, when a series is not stationary, 
it will be necessary to work with its differentiation, 
∆𝑦𝑡. If, following the differentiation process, the 
series becomes stationary, it can be said that the 
original series is integrated in the first order. 

4. THE CASE OF REGRESSION BETWEEN TWO SERIES: xt 
AND yt. 

Given two time series 𝑥𝑡 and 𝑦𝑡, the first task is to 
test for the presence of stationarity in both series. 
Thus, let 𝑥𝑡 be the percentage variation series of the 
cost of living index (ICV), measured by the DIEESE 
(Inter-union Department of Statistics and Socio-
economic Studies) (2018), from January 2008 to 
December 2014, and let  𝑦𝑡 be the variation of the 
IPCA that was addressed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5 The augmented Dickey-Fuller test for the cost of living index. 
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Following the Augmented Dickey-Fuller test, the 

observed value of 𝑡 is lower than the critical value –
2.9, which favors the hypothesis of stationarity, as 
shown in Figure 5. Thus, it can be said that the 
regression techniques can be applied to the series 
and the estimators of OLS will be consistent, always 
bearing in mind that the usual tests for the presence 
of normality and homoscedasticity still need to be 
verified. 

After this comparison, the next step is to 
determine which series can be seen as regressive and 
which as a predictor. In the literature, this procedure 
is known as the Granger causality test (1969). 

The method is consistent in using different lags of 
one series to predict the other. The idea is to 
determine whether 𝑥𝑡 influences 𝑦𝑡, or whether 𝑦𝑡 
influences 𝑥𝑡, or even whether there is a reciprocal 
influence between the series (when this occurs, it is 
said that there is endogeneity in the model). In this 
latter case, there may be an exogenous series, 𝑧𝑡, 
that needs to be controlled or there may be a better 
candidate for the proposal of Granger causality. In 
this text, the issue of endogeneity will not be 
discussed. 

The hypotheses of the Granger causality test are: 

 H0: 𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ +
𝛽𝑘𝑦𝑡−𝑘 + 𝜀𝑡 (restricted model); 

 H1: 𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ +
𝛽𝑘𝑦𝑡−𝑘 + 𝛼1𝑥𝑡−1 + 𝛼1𝑥𝑡−1 + 𝛼2𝑥𝑡−2 + 𝛼𝑘𝑥𝑡−𝑘 + 𝜀𝑡 
(unrestricted model). 

The idea is to determine statistically whether 𝑥𝑡 
provides more information on future values of 𝑦𝑡 
than past values of 𝑦𝑡 alone. Moreover, the opposite 
should also be tested: 

 H0: 𝑥𝑡 = 𝛽0 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + ⋯ +
𝛽𝑘𝑥𝑡−𝑘 + 𝜀𝑡 (restricted model); 

 H1: 𝑥𝑡 = 𝛽0 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + ⋯ +
𝑥𝑦𝑡−𝑘 + 𝛼1𝑦𝑡−1 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + 𝛼𝑘𝑦𝑡−𝑘 + 𝜀𝑡 
(unrestricted model). 

to know whether 𝑦𝑡 provides more information on 
future values of 𝑥𝑡. 

 In both hypotheses, the test statistic is 
obtained through the following equation:  

  𝐹 =
(𝑆𝑆𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑−𝑆𝑆𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)/𝑔

(𝑆𝑆𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)/(𝑛−𝑝−1)
      (Equation 02) 

In which SS are the sums of the squared residuals, 
obtained directly from the ANOVA regression tables; 
g is the number of coefficients that were zeroed 
(restrictions) in H0; n is the sample size effectively 
used in the regressions, already discounting the 
observations lost through lags; and p is the number 
of coefficients of the lagged variables in H1. 

 

Fig. 6 Preparation of the Excel spreadsheet for the application of the Granger causality test. 
 

When Equation 02 is applied to the first set of 
hypotheses in which 𝑦𝑡  = IPCA and 𝑥𝑡 = ICV, g = 4; n = 

80; p = 8 and the numerical expression of Equation 
02, we have: 

 

𝐹 =  
(2.30 − 2.13)/4

(2.13)/(80 − 8 − 1)
= 1.47. 

Thus, the p-value = 0.22 associated with this 
statistic is easily obtained using the distribution of the 

F statistic in Excel (=1 – F.DIST(F = 1.47, g = 4, n – p – 
1 = 71, 1)). The conclusion of the test is that there is 
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no evidence for rejecting the hypothesis that the IPCA 
only carries information about itself and the inclusion 
of lags in the ICV does not bring any predictive benefit 
to the IPCA. 

On the other hand, the relationship in an inverse 
sense generates the following result: 

 

𝐹 =  
(11.92 − 9.49)/4

(9.49)/(80 − 8 − 1)
= 4.55. 

Leading to p=value = 0.0025, favoring H1. This 
result means that the IPCA can be used as a predictor 
of the ICV. In other words, the IPCA has a predictive 
characteristic when it comes to the ICV. In the 
literature, it is a common finding that “the IPCA, in the 

sense of Granger, causes the ICV”. Therefore, the ICV 
must be regressed on the IPCA to determine the 
impact of one on the other. Only now can the series 
be evaluated as in usual linear regression. 

 

Tab. 2Results of the regression of the ICV on the IPCA 

 Coefficients Standard Error t Stat  P-value 

Lower 

95% Upper 95% 

Intercept 0.04 0.09 0.48 0.63 -0.13 0.21 

IPCA 0.95 0.16 5.77 0.00 0.62 1.28 

 
Table 2 can be interpreted as a usual simple 

regression. Here, the relationship is arrived at 
through ICV = 0.95IPCA + 0.04, which indicates that at 
each increase in a unit of variation of the National 
Price Index for General Consumers, there is an 
increase in the cost of living index in the order of 0.95 
with reliability of 95%. This means that a positive 
variation in inflation has the power to increase the 
variation of the cost of living index. 

As the intercept is not significant, it can be 
removed from the regression equation, reevaluating 
a model that only takes the slope of the line into 
consideration: 𝑥𝑡 = 𝛽1𝑦𝑡 + 𝜀𝑡; or uses centralization 
(𝑥𝑡   =  𝛽0 + 𝛽1(𝑦𝑡   −  �̅�)), in an attempt to seek a 
practical meaning for the intercept when the values 
of the cost of living series draw close to their average 
values. 

Here, other lags of the variation of the ICV and the 
IPCA may be added to the model and the marginal p-
values of these lags evaluated to determine how 
many of them should be used. 

Furthermore, usual normality tests (Shapiro & 
Wilk, 1965) and homoscedasticity (Breusch & Pagan, 
1979) are required to verify the usual regression 
assumptions. In addition, the test created by Ljung-
Box (1978) must be performed to verify whether the 
residuals are not autocorrelated after the modeling. 
The idea is that the residuals behave like a white 
noise. 

If an autocorrelation structure is detected in the 
residuals, it can be incorporated into a range of 
solutions described by Bueno (2011) or Morettin and 
Tolói (2006). 
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